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Abstract

The present paper examines the robustness of the result derived in the canonical model
of investment under uncertainty, and explores the relationship between uncertainty and in-
vestment. We have arrived upon the conclusion that, for three different cases of the demand
shock, whether or not an increase in uncertainty depresses investment depends on the con-
cavity of the operating profit function with respect to the demand shock. However even if
the operating profit function is convex in the demand shock, an increase in uncertainty may
not necessarily raise investment and would depress investment, depending on the range of
model parameters. This result implies that the convexity of the operating profit function
need not necessarily to be dismissed due to the emprirical validity of the model.

1 Introduction

The effects of uncertainty on investment have long been extensively explored in the literature
on the investment theory. Taken as whole, different theories emphasize different channels, some
pointing to a positive relationship and others to a negative relationship. We can classify theories
of investment under uncertainty into two strands of theory. One focuses on the adjustment cost
and the other emphasizes the irreversibility of investment.

In the models of Hartman(1972), Abel(1983,85), Abel and Eberly(1994), the marginal rev-
enue product of capital is convex and it is the flexibility of labor relative to capital that generates
this convexity. When the operating profits are convex in the shock against the market demand,
any mean-preserving increases in the distribution of the shock raises investment of the firm.
On the other hand, Caballero(1991) and Pindyck(1993) pointed out that the relationship be-
tween uncertainty and investment should not be expected from the adjustment costs literature
alone and when the firm faces an elastic demand curve in an imperfectly competitie market, the
negative relation between investment and uncertainty is likely to be reversed 1.

In the canonical models of investment with irreversibility based on the real options ap-
proach, as shown in Bernanke(1983), McDonald and Siegel(1986), Pindyck (1988), Bertola and
Caballeo(1994), and Dixit and Pindyck(1994), an increase in the volatility of price flucuations
leads to a rise of trigger point to invest and then decelerates investment. In this literature,

1See also Caballero and Pindyck(1996), Abel and Eberly(1996,1999).
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uncertainty affects irreversible investment in two ways: first, through the effects of the risk pre-
mium component on the marginal profitability of capital, and second, through the effects on the
tigger threshold of the value of waiting 2.

Those models mentioned above predict a positive or negative effect of uncertainty on in-
vestment depending on whether the marginal revenue product of capital is a convex or concave
function of the exogenous shock. In the case of convexity, an increase in the variance of the
shock would raise investment via Jensen’s inequality. Leahy and Whited(1996) showed in their
empirical studies that uncertainty exerts a strong negative influence on investment and that
uncertainty affects investment directly rather than working through covariances. This result
casts doubt on the importnace of theories that emphasize the convexity of the marginal revenue
product of capital such as a Hartman-Abel model.

The present paper examines the robustness of the conclusion derived in the canonical model of
investment under uncertainty and explore the relationship between uncertainty and investment.
A canonical model of investment under uncertainty is formulated in Section 2. The section 3
is devoted to analyzing the relationship between uncertainty and investment in this canonical
model. We explore the investment behavior with three different dynamical systems governing the
shock processes: first, when the demand shock is governed by the familiar geometric Brownian
motion; second, when it is governed by a mean-reverting stochastic process, and third, when it
obeys a geometric Brown-Poisson process.

2 A Canonical Model of Investment under uncertainty

We consider a firm that produces output using capital K and variable factors of production. It
earns the operating profit that depends on the random variable X. The operating profit at time
t is denoted by π(K(t), X(t))．K(t) is the capital stock at time t, and X(t) is an exogenous
shock to the productivity, factor prices, or the demand for products.

We consider the standard case that the production function is given by the following Cobb-
Douglas production function:

y = F (L,K) = LαK1−α, 0 < α < 1. (1)

The demand curve faced by the firm is assumed to be given by

P (t) = Q(t)(1−φ)/φX(t)ϕ,φ ≥ 1, ϕ > 0, (2)

where, P (t) is the market price at time t, Q(t) is the aggregate quantity of product supplied in
the market. When the product market is perfectly competitive, we set φ = 1. When ϕ = 1, the
demand shock is proportional to the market price, so that the demand shock is interpreted as a
shock to the market price. Assume that Q = Ny (N = 1 is the number of firms), and then the
operating profit π(K,X) = P (t)LαK1−α − wL(t) is given by

π(K(t), X(t)) = hX(t)νK(t)β , (3)

2Recently this negative relationship between uncertainty and investment is questioned. Sarkar(2000), Gry-
glewicz et al(2008) and Wong(2007) have suggested that an increase in the trigger threshold may not induce a
delay in the timming of investment, i.e. the investment-uncertainty relationship is not neccessarily monotonic.
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where, w is the wage rate and

h = (1− α

φ
)(
α

φ

1

w
)
(α
φ

)/(1−α
φ

)
,

ν =
ϕφ

φ− α > 0,

β =
1− α
φ− α < 1.

Here, it is clear that πK > 0,πKK : < 0,πX > 0. The operating profit is a concave function of
capital stock K. If ν > 1, the profit function is a convex function of the exogenous shock X.
When ν < 1, the profit function is a concave function of the exogenous shock. ν > 1 if and only
if ϕ > 1 − α/φ. This fact implies that the marginal revenue product of capital is a decreasing
function of capital but convex or concave in the value of the exogenous shock depending on
the value of the parameter ϕ 3. When the market is perfetly competitive, the profit function
depends linearly on the capital stock K. On the other hand, when the market is imperfetly
competitive, the profit function is strictly concave in the capital stock K.

We utilize three different stochastic differential equations for the exogenous shock processes:
the familiar geometric Brownian motion, a mean-reverting stochastic process, and a geometric
Brown-Poisson process.
The geometric Brownian case. The random variable X is governed by the following stochatic
differential equation:

dX(t) = µ(X(t))dt+ σ(X(t))dz, (4)

where z is the standard Brownian motion. The random variableX obeys the geometric Brownian
motion if the drift and vairance coefficients are expressed by

µ(X) = µX, σ(X) = σX.

The mean-reverting case. The random variableX is governed by the following mean-reverting
differential equation:

dX(t) = ι(µ−X(t))dt+ σX(t)dz(t), (5)

where, ι is the speed of reversion, µ is the long-term demand level, and σ is the volatility of the
process.

The geometric Brown-Poisson case. The random variable X is governed by the following
geometric Brown-Poisson differential equation:

dX = (µ− λ̃k)X(t)dt+ σX(t)dz(t) + kX(t)dN(t), (6)

where N is the Poisson process, λ̃ is the arrival rate or intensity rate of Poisson process, and k
is the expected amplitude of size on jump.

The capital stock grows according to

dK(t) = (I(t)− δK(t))dt, (7)

3ν = 1 is assumed in deriving their conclusion in Abel(1983), Abel and Eberly(1994), and Caballero and
Pindyck(1996). The specification that ν < 1 coupled with the linear homogeneity of π in K and X is presupposed
in the model of Abel and Eberly(1996,199). Caballero(1991) used the presupposition that ν > 1.
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where, I(t) is the investment at time t, δ is the rate of depreciation．In order to build a new
capital stock, the adjustment cost is inquired. The direct cost of investment is composed of
the purchase/sale price of capital goods and the installing/detaching costs. The adjustment
costs of investment arise from training workers and expanding the operating capacity to manage
and operate the plant and machines at the larger scale. The fixed cost is independent of the
amount of investment but this cost may be linearly homogeneous of investment and capital if it
reflects stopping the operation and/or starting up the plant conditions in the efficient way and
on the different scale. The gross cost of investment can be therefore expressed in the function
form c(I,K). The gross investment cost function c(I,K) is assumed strictly convex for I and
continuous except for at the origin I = 0. The right-hand derivative on the origin is assumed to
be larger than the left-hand derivative on that point. That is,

lim
h→0

cI(0 + h,K) ≥ lim
h→0

cI(0− h,K), h > 0

This assumption implies that the sale of capital goods cannot be accomplished at the same price
as the their purchase and there are also installation costs, which are added to the purchase price
but cannot be recovered on sale. There may be additional costs of detaching and moving to
other places, and sufficiently specialized machinery and plants may have little value to others.

We assume that the firm is risk neutral or risk averse and maximizes the expected present
value of π(K,X) minus c(I,K). The present value V of the firm is given by

V (K(s), X(s)) = max
I
Es[

Z ∞
0
{π(K(t+ s), X(t+ s))− c(I(t+ s),K(t+ s))}e−ρtdt] (8)

where, Es is the conditional expectation operator at time s, and ρ > 0 is the discount rate that
the investors or stockhholders require. Using dynamic programming technique, we have

ρV (K,X) = max
I
{π(K,X)− c(I,K) + 1

dt
EsdV.} (9)

The left hand side is the required rate of return and the right hand side is the maximized
rate of return on investment. The maxizimed rate of return is composed of the gross profit
π(K,X)−c(I,K) and the capital gain EdV/dt. Applying the Ito’s lemma, we have the Hamilton-
Jacobi equation

Vs +max
I
[A(s)V + π(K,X)− c(I,K)] = ρV (K,X),

where A is the infinitesimal generator (second order differential operator). When the stochastic
differential equation (4) is used, the infinitesimal generator is given by 4

A(s)V = (I − δK)VK + µ(X)VX + 1
2
σ(X)2VXX .

Since Vs = 0,

max[π(K,X)− c(I,K) + (I − δK)VK + µ(X)VX + 1
2
σ(X)2VXX ] = ρV (K,X), (10)

4The infinitesimal generator for the stochastic differential equation (5) or (6) is similarly given. The analysis
for these cases will be conducted in the next section.
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Here, fx denotes the partial derivative of f by x, fxx is the second order partial derivative by
x. The marginal value q of the firm is defined by q = VK . Optimal investment I

∗ is the amount
of investment which maximizes the function:

ψ(I;K,X) ≡ IVK − c(I,K)

Optimal investment depends on q(= VK) and K. Therefore, we can express this relationship by
I∗ = I∗(q,K).

If the gross investment cost function is differentiable, the first order condition is given by

cI(I
∗,K) = q.

It should be reminded that the function c(I,K) is not differentiable at the origin and cI(0,K)
+ >

cI(0,K)
− . Since c(I,K) is not differentiable at I = 0, optimal investment must be zero as far

as cI(0,K)
+ ≥ q ≥ cI(0,K)− is satisfied. Hence optimal investment is characterized as follows:

cI(I
∗,K) = q, when q > cI(0,K)

+,
I∗ = 0, when cI(0,K)

+ ≥ q ≥ cI(0,K)−,
cI(I

∗,K) = q, when cI(0,K)
− > q

When q > cI(0,K)
+, the gross investment is positive but when q < cI(0,K)

−, the gross in-
vestment is negative, that is, the old machinery and equipments are on sale. If the investment
cost function is kinked at the origin, the investment policy is the trigger strategy of Ss type.
The value qu = cI(0,K)

+ is the upper trigger point and ql = cI(0,K)
− is the lower trigger

point. Since the investment cost function is assumed strictly convex, investment is an increasing
function of q as long as q > cI(0,K)

+. In other word, investment is positively related to the
value of q but is not monotonically related.

Next, we derive the formula describing the dynamics of the marginal value of the firm. Taking
the derivative of eq.(10) with respect to K, we obtain

πK(K,X)− cK(I∗,K)− δq + qK(I∗ − δK) + µ(X)qX + 1
2
σ(X)2qXX = ρq. (11)

It should be noted that q is a function of K and X and so the functional form can be expressed
as q = q(t,K,X). Eq.(11) can be expressed in the following form:

A(t)q + πK(K,X)− cK(I∗,K)− (ρ+ δ)q = 0. (12)

Using the Feynman-Kac theorem5, we have

q(t,K,X) = Et[

Z ∞
0
{πK(K(t+ s),X(t+ s))− cK(I(t+ s),K(t+ s))}e−(ρ+δ)sds] (13)

where we utilized the reasonable condition that limT→∞ q(T,K,X)e−(ρ+δ)T = 0. Thus, q is the
present value of the stream of expected marginal profit of capital which consists of the marginal
revenue product πI of investment and the marginal investment cost cI .

5See the textbook on stochstic differential equations, for instance, Karatzas and Shreve(1991), p.364-365.
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We assume that the gross adjustment cost of investment can be formulated in the following
form:

c(I,K) =


a1K + b1I + η1I

γ1Kγ2 , when I > 0
0, when I = 0,
a2K + b2I + η2|I|γ1Kγ2 , when I < 0

(the gross cost function of investment)

where,a1, a2 > 0, b1 > b2 > 0, η1, η2 ≥ 0. The first terms a1K, a2K are interpreted as the fixed
cost inquired on investment which depends on caital stock but is independent of the amount of
investment. This fixed cost may reflect the cost of stopping and restated while new capital is
installed or existing capital is removed 6. The assumption that b1 > b2 > 0 captures a partial
irreversibility of the past investment. η2 = ∞ corresponds to the complete irreversibility. The
third term captures the adjustment cost which is commonly assumed linearly homogeneous in
the amount of investment and the existing amount of capital stock in the traditional literature.
The functional form described above is an extended version used by Abel and Eberly(1994).
When γ1 + γ2 = 1, the gross investment cost function is linearly homogeneous of investment I
and capital K, which implies that optimal investment-capital ratio depends only on the marginal
value of capital q = VK . In this case, it can be shown that the marginal q = VK equals the
average q, V/K if the operating profit is a linear function of capital. When γ2 = 0, cK =cosntant,
in which case the analytical form of q can be easily derived. We cannot analytically derive the
characteristics of optimal investment rule in general and so we need to analyze the probem for
two separate cases: the cae I in which a1 = a2 = γ2 = 0, and the case II in which γ2 6= 0.

3 The relationship between uncertainty and investment

We consider the case I first. The cost function of investment is given by

c(I,K) = c(I) =


b1I + η1I

γ1 , when I > 0
0, when I = 0,
b2I + η2|I|γ1 , when I < 0

.

Then, cK(I,X) = 0. Optimal investment is characterized by

(I∗)γ1−1 = (q − b1)/(η1γ1) > 0, when q > b1,
I∗ = 0, when b1 ≥ q ≥ b2,
(−I∗)γ1−1 = −(q − b2)/(η2γ1) > 0, when b2 > q

Eq.(10) is simplified into

max
I

ψ(I : K,X) + π(K,X)− δKVK + µXVX + 1
2
σ2X2VXX = ρV (K,X). (14)

Note that when I∗ = 0, maxI ψ(I : K,X) = −c(0), and when I∗ 6= 0,

max
I

ψ(I : K,X) = VKI
∗ − c(I∗) = VK(−1)i−1(

VK − bi
ηiγ1

)1/(γ1−1) − c(I∗), i = 1, 2,

6This presumption implies that the first terms should be expressed by a1π(X,K), a2π(X,K) where 0 < a1, a2 <
1.
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where i = 1 if I > 0 and i = 2 if I < 0. Since the marginal value of capital VK is in general
a function of capital stock K, maxI ψ(I) = I

∗VK − c(I∗) depends on the level of capital stock.
It is difficult to derive the analytical solution of the partial differential equation (14) unless the
marginal value of capital VK is independent of capital stock. In other words, the operating
profit must be a linear function of capital, which requires the perfect competition in the product
market. To obtain the analytical solution, we need to assume that β = 1.

3.1 The Case I with β = 1

We assume that β = 1, i.e. the product market is perfectly competitive. Suppose that
V (K,X) = A(X)K +B(X). Substituting this function into the above equation (14), we have

[hXν − δA(X) + µXA0(X) + 1
2
σ2X2A00(X)− ρA(X)]K

+[maxψ(I) + µXB0(X) +
1

2
σ2X2B00(X)− ρB(X)] = 0. (15)

This relationship must hold for arbitrary values of K and so the value within each bracket must
be zero. Hence the following equations hold:

hXν − δA(X) + µXA0(X) + 1
2
σ2X2A00(X)− ρA(X) = 0, (16)

maxψ(I) + µXB0(X) +
1

2
σ2X2B00(X)− ρB(X) = 0. (17)

The Feynman-Kac formula leads to the solutions

A(X(t)) = Et

Z ∞
0
hX(t+ s)νe−(ρ+δ)sds, B(X(t)) = Et

Z ∞
0
maxψ(I(t+ s))e−ρsds. (18)

The marginal value of capital is given by

q = VK = A(X).

It is obvious that if the market is perfectly competitive, the marginal value of capital does not
depend on the existing level of capital stock. Our pressumption is supported. When the market
is imperfectly competitive, it is very difficult to obtain an analytical expression for the expected
present value V (K,X) of the firm .

To examine the effects of uncertainty on investment, we must specify the nature of the
dynamic path governing the state variable X. First we assume that the state variable X obeys
the geometric Brownian motion. We can set the expected growth rate of X to be zero without
the loss of generality. Then we have

Et[lnX(t+ s)] = lnX(t)− 1
2
σ2s, Vart[lnX(t+ s)] =

1

2
σ2s,

so that we have

Et[lnX(t+ s)
ν ] = ν{lnX(t)− 1

2
σ2s},

Vart[lnX(t+ s)
ν ] = ν2Vart[lnX(t+ s)].
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Noting that

Et[X(t+ s)
ν ] = exp[Et lnX(t+ s)

ν +
1

2
Vart{lnX(t+ s)ν}]

we have

Et[X(t+ s)
ν ] = X(t)ν exp{1

2
ν(ν − 1)σ2s}. (19)

Therefore the marginal value of capital q is given by

q(t) = VX =
hX(t)ν

ρ+ δ − 1
2ν(ν − 1)σ2

. (20)

This formula is exactly the same result derived by Abel and Eberly(1994), which induces the pos-
itive relationship between uncertainty and investment identified in Hartman(1972), Abel(1982),
and Caballero(1991) where ν > 1 is presupposed. It is alwas true that ν = 1 if ϕ = 1, that
is, the shock is a price shock. When ν > 1 (i.e. α > φ(ϕ − 1)), an increase in σ increases
the marginal value of capital. In other words, investment is not a decreasing function of σ for
given X(t). This positive relationship originates in the convexity of marginal revenue products
of capital with respect to X(t) (interpreted as the market prices in the present setting). On
the other hand, if ν < 1, an increase in σ decreses the marginal value of capital. In other
words, investment is not an increasing function of σ for given X(t). This negative relationship
originates in the concavity of marginal revenue products of capital with respect to X(t) (under
the condition ν < 1).

In conclusion, an incease in uncertainty raises as well as decreases investment depdending
on the values of ϕ. ϕ̄ = (φ− α)/φ is the critical value. When ϕ < ϕ̄, an increase in uncertainty
decelerates investment and othewise, it accelerates investment. There exists no monotonic rela-
tionship between uncertainty and investment in the canonical investment model with the convex
adjustment cost.

For the model to be consistent with canonical real options models of investment such
as developed by Brennan and Schwartz(1985), McDonald and Siegel(1986), and Dixit and
Pindyck(1994), the rate of discount ρ used in the preceeding analysis above should be ques-
tioned. In any real options models of investment, the discount rate is utilized so as to be
consistent with the no-arbitrage condition in asset markets. For instance, CAPM says that

ρ = r + λρimσ,

where, λ is the market rice of risk and ρim is the correlation coefficient between the rate of
return on the investment project and the rate of return on the market portfolio in the financial
asset market. When we use this relatiohship,

q(t) = VX =
hX(t)ν

r + λρimσ + δ − 1
2ν(ν − 1)σ2

. (21)

It is easy to see that q is a decreasing function of σ if ν < 1 but when ν > 1 and the following
inequality holds

σ < σ̄ ≡ λρim
ν(ν − 1) ,
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q is a decreasing function of σ. An increase in uncertainty of products demand (price) X
decelerates investment if the volatility σ is less than the value σ̄ but an increase in uncertainty
accelerates investment if ν > 1 and σ is greater than the value σ̄. Since an increase in uncertainty
raises the discount rate via the risk premium formula and an increase in the dicount rate leads
to a decrease in the present value of future expected profits, otherthings being equal, it comes
with little surprise that an increase in uncertainty may decrease the present investment. This
effect might be named the discounting effect. Thus, uncertainty may accelerates as well as
decelerates investment depending on the value of the volatility of price fluctuations faced the
firm. This conclusion is supprted by assuming that the market is perfectly competitive, the
production function is linearly homogeneous in labor and capital, and demand fluctuations obey
the geometric Brownian motion 7.

What happens when the different stochastic processes are assumed for the dynamical system
governing the future pathes of the state variable X. Suppose that the state variable X obeys
the following mean-reverting process:

dX(t) = ι(µ−X(t))dt+ σX(t)dz(t), (22)

where, ι is the speed of reversion, µ is the long-term demand level, and σ is the volatility of
the process. z is the standard Brownian motion. The Hamilton-Jacobi equation (14) can be
rewritten into

max
I

ψ(I : K,X) + π(K,X)− δKVK + ι(µ−X(t))VX + 1
2
σ2X2VXX = ρV (K,X). (23)

As before, supposing that V (K,X) = A(X)K + B(X) and utilizing the solving technique used
above, we have the same formula of the marginal value function:

A(X(t)) = Et[

Z ∞
0
hX(t+ s)νe−(ρ+δ)sds].

Note that the solution of the mean-reverting stochastic equation for the state variable X is
kwown to be given by 8

X(t+ s) = µ+ (X(t)− µ)e−ιµs + σe−ιµs
Z s

0
eιµudz(u). (24)

The expected value and the variance of X are computed as follows:

Et[X(s)] = µ+ (X(t)− µ)e−ιµs, Vart[X(s)] =
σ2

2ιµ
(1− e−2ιµs).

In the present setting of the model the operating profit function is convex in the demand shock
(i.e., ν > 1) or concave in X (i.e. ν < 1). First, to caputure the nature of convexity, we can
assume that ν = 2 to simplify our analysis. Then the formula for the marginal value of capital
is simplified into

q(t)) =

Z ∞
0
hEt[X(t+ s)

2]e−(ρ+δ)sds.

7Leahy and Whited(1996) detected the empirical evidence that the discount effect is not a major channel
through which uncertainty affects investment. In the subsequent analysis, we will not explicitely discuss about
this discount effect.

8See Musiela and Rutkowski(2007), Lemma 10.1.2 .
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Since

Et[X(t+ s)
2] = V art[X(t+ s)] + [EtX(t+ s)]

2,

we obtain

∂Et[X(t+ s)
2]

∂σ
=

σ

ιµ
(1− e−2ιµs) > 0.

Therefore,

∂q(t)

∂σ
=

Z ∞
0
h
σ

ιµ
(1− e−2ιµs)e−(ρ+δ)sds > 0.

It is clearly seen that an increase in σ raises the marginal value of capital and so accelerates
investment as long as the discounting effect through the risk premium component is ignored.
This result comes from the convexity of the profit function with respect to the value of the
demand shock. The operating profit is convex if and only if ϕ > 1 − α/φ . When the product
market is perfectly competitive, this condition reduces to the inequality: ϕ > 1−α. A sufficient
condition for the profit function to be convex is that the fluctuations of the market price are
proportional to the demand shock. Hence we can claim that the convexity of the profit function
with respect to the demand shock plays the crucial role to assure the positive relationship
between the uncertainty and investment.

Now we suppose that the state variable X is governed by the following geometric Brown-
Poisson process:

dX = (µ− λ̃k)X(t)dt+ σX(t)dz(t) + kX(t)dN(t), (25)

where N is the Poisson process, λ̃ is the arrival rate or intensity rate of Poisson process, and
k is the expected amplitude of size on jump. We assume that k > −1. The time path of this
stochoastic process is given by

X(t) = X(0) exp{(µ− λ̃k − σ2/2)t+ σz(t)}(k + 1)N(t).

As well known, the infinitesimal generator for this stochastic differential equation is expressed
by9

AV (K,X) = VK(I − δK) + VX(µ− λ̃k)X +
1

2
VXXσ

2X2 + λ̃[V (X(t))− V (X(t−))],

where, V (X(t)) − V (X(t−)) = V ((k + 1)X(t)) − V (X(t)). Eq.(14) for the Brown-Poisson case
is written by

max
I

ψ(I : K,X) + π(K,X)− δKVK + VX(µ− λ̃k)X +
1

2
VXXσ

2X2

+λ̃[V ((k + 1)X(t))− V (X(t))] = ρV (K,X).

Supposing that V (K,X) = A(X)K + B(X), and substituting this function into the above
equation, we have

[hXν − δA(X) + (µ− λ̃k)XA0(X) + 1
2
σ2X2A00(X)− (ρ+ λ̃)A(X) + λ̃)A((k + 1)X)]K

+[maxψ(I) + (µ− λ̃k)XBA0(X) + 1
2
σ2X2BA00(X)− (ρ+ λ̃)B(X) + λ̃)B((k + 1)X)] = 0.

9See Shreve(2004), Theorem 11.5.1.
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This relationship must hold for arbitrary values of K and so the value within each bracket must
be zero. Hence the following equations hold:

hXν − δA(X) + (µ− λ̃k)XA0(X) + 1
2
σ2X2A00(X)− (ρ+ λ̃)A(X) + λ̃)A((k + 1)X) = 0, (26)

maxψ(I) + (µ− λ̃k)XBA0(X) + 1
2
σ2X2BA00(X)− (ρ+ λ̃)B(X) + λ̃)B((k + 1)X) = 0.(27)

Substituting the form A(X) = aXν into the equation (26) gives rise to

A(X) =
Xν

δ + ρ− µν − 1
2σ

2ν(ν − 1) + λ̃{1 + kν − (1 + k)ν} .

Since the Poisson process has the variance λ̃t during time period t, the uncertainty arising from
the demand shock driven by the Poisson process can be represented by the quantity λ̃. It is
obvious that if ν > 1, the inequality :

1 + kν < (1 + k)ν

is satisfied for any positive number k. If ν < 1, 1 + kν > (1 + k)ν for any positive number
k. Therefore, an increase in λ̃ raises the value of VK ( = the marginal value of capital q) if
ν > 1, and then accelererates investment. Otherwise, an increase in λ̃ decelerates investment.
The uncertainty arising from the Poisson process also raises as well as depresses investment
depending on the parameter value of ϕ. It is clear that when ϕ is close to one, uncertainty
arising from the Poisson process raises investment.

In sum, we have arrived on the conclusion that, for three different cases of the demand
shock, whether or not an increase in uncertainty raises investment depends on the convexity
of the operating profit function with respect to the demand shock. For the operating profit
function to be convex in the demand shock, the following inequality must be satisfied:

ϕ > 1− α

φ
.

Otherwise, the profit function is concave in the demand shock and an increase in uncertainty
depresses investment. When ϕ = 1− α

φ , an increase in uncertainty does not affect any effect on
investment. When the product market is perfectly competitive, φ = 1 and the condition for the
convexity of the profit function reduces to ϕ > 1− α 10.

3.2 The Case I with β < 1

We assume that β < 1, i.e. the product market is imperfectly competitive. We also assume that
the demand shock is governed by the geometric Brownian motion (4). The Hamilton-Jacobi-
Bellman equation for the marginal value of capital is given by Eq.(11):

πK(K,X)− cK(I∗,K)− δq + qK(I∗ − δK) + µ(X)qX + 1
2
σ(X)2qXX = ρq.

When the marginal value of capital, q, is between the sale price of capital, b2 and the purchase
price of capital, b1, it is optimal not to purchse nor to sell capital. It is optimal to purchase

10α is the share of labor and is arround 0.7− 0.8, which implies that ϕ > 0.2− 0.3.
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capital only when the marginal value of capital is greater than b1 and to sell capital only when
it is less than b2. When b2 < q < b1, I

∗ = 0 so that the equation above is simplified into

βhXνKβ−1 − δq − qKδK + µXqX +
1

2
σ2X2qXX = ρq. (28)

The general solution of eq.(28) can be expressed in the form

q(K,X) = AXνKβ−1 +B(X),

where the first term is the special solution and the second term is the homogenous solution. We
suppose that the homogenous solution is in the form B(X) = BXθ. Then, θ must satisfy the
following quadratic equation:

1

2
σ2θ(θ − 1) + µθ − (δ + ρ) = 0. (29)

There exist two distinct roots of this equation, θ1 > 1, θ2 < 0. The value of B(X) must remain
finite when the value of X approaches zero, which means that the term of Xθ2 should vanishes.
Therefore,

B(X) = BXθ1 .

The coefficient B is a constant that is yet to be determined. Substituting the special solution
into eq.(28), we have

A =
βh

ρ+ βδ − νµ− 1
2ν(ν − 1)σ2

.

The firm will undertake non-zero gross investment only if q reaches one of boundaries b1 or
b2. The values of X at these boundaries, X1, X2, are given by the smooth-pasting and the
high-contact conditions. The smooth-pasting conditions for the solution of eq.(28) are

q(K1, X1) = b1, q(K2, X2) = b2,

and the high-contact conditions are

∂q(K1, X1)

∂X
= 0,

∂q(K2, X2)

∂X
= 0.

Using these boundary conditions gives rise to

X1 = [
b1

1− ν/θ1

ρ+ βδ − νµ− ν(ν − 1)σ2/2

βh
K1−β]1/ν ,

and

B = − ν

θ1
(

b1
(1− ν/θ1)A

)(ν−θ1)/νAK−(1−β)θ1/ν .

The trigger threshold to invest, X1, is a function of b1, θ1, ν and the capital stock K.

12



Suppose that the profit function is concave in X, i.e. ν < 1. Then,

b1
1− ν/θ1

ρ+ βδ − νµ− ν(ν − 1)σ2/2

βh
> 0

since ν/θ1 < 1 and ρ+ βδ− νµ− ν(ν − 1)σ2/2 > 0 for θ1 > ν > θ2. The trigger threshold X1 is
an increasing function of the direct cost of investment, i.e., the cost of purchasing capital goods.
An increase in the purchase cost of capital goods raises the trigger level so that it would depress
investment. If 1 ≥ β + ν, an increase of the existing capital stock decreases investment. The
inequality 1 ≥ β + ν holds when the operating profit function is linearly homogenous in X and
K. This is an intuitively reasonable implication.What happens when uncertainty increases? An
increase in σ increases the value of ρ+ βδ − νµ− ν(ν − 1)σ2/2. Since

dθ1

dσ
= − 2σθ1(θ1 − 1)

σ2(θ1 − 1/2) + µ < 0,

an increase in σ decreases the value of θ1 and so increases the value of
b1

1−ν/θ1
. Thus, an increase

in uncertainty exerts a positive effect on the trigger threshold to invest.
The critical level of the operating profit corresponding to the trigger threshold to invest is

given by

π(K,X1) = hX
ν
1K

β =
b1
β

ρ+ βδ − νµ− ν(ν − 1)σ2/2

1− ν/θ1
K.

π(K,X) > π(K,X1) if and only if X > X1 independently of the values of ν and β. The firm will
undertake non-zero investment only when the operating profit π(K,X) reaches the critical level
π(K,X1). The critical trigger level of the profit is linearly homogenous in the existing capital
stock. An increase in the capital stock induces in one-to-one a rise in the critical profit level. It
should be reminded that ρ+ βδ − νµ− ν(ν − 1)σ2/2 is an increasing function of σ if ν < 1 and
that θ1 is a decreasing function of σ. Therefore, an increase in uncertainty depresses investment
and so there exists a negative relationship between uncertainty and investment as far as ν < 1,
i.e., the profit function is concave function in X.

Next we suppose that the operating profit function is convex in the demand shock, i.e., ν > 1.
In this case, ρ+βδ− νµ−ν(ν− 1)σ2/2 is a decreasing function of σ. An increase in σ decreases
the value of ρ + βδ − νµ − ν(ν − 1)σ2/2, so that a rise of uncertainty exerts a negative effect
on the trigger threshold to invest. On the other hand, an increase in σ decreases the value of
θ1 and so it increases the value of

b1
1−ν/θ1

. Thus, an increase in uncertainty exerts two opposing
effects on the trigger threshold to invest. A rise of uncertainty may decrease as well as raise the
critical trigger level of the profit to invest, depending on the values of such parameters as ν and
β. Therefore, when ν > 1, there exists no simple monotonic relationship between uncertainty
and investment.

The relationship between uncertainty and investment discussed above is based on the effect
which unceratainty exerts on investment through changes in the trigger threshold to invest. We
have not analyzed the traditional famous effect that changes in the marginal value of capital
cause the amount of investment when positive gross investment is being undertaken. We will
explore this issue. When the marginal value of capital is greater than the trigger threshold X1,
optimal investment is given

I∗ = (
q − b1
η1γ1

)1/(γ1−1).
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The Hamilton-Jacobi equation is

βhXνKβ−1 − δq + qK{(q − b1
η1γ1

)1/(γ1−1) − δK}+ µXqX + 1
2
σ2X2qXX = ρq. (30)

This partial differential equation is difficult to solve analytically.

3.3 The Case II

We consider the case II, in which γ2 6= 0. The cost function of investment is given by

c(I,K) =


a1K + b1I + η1I

γ1Kγ2 , when I > 0
0, when I = 0,
a2K + b2I + η2|I|γ1Kγ2 , when I < 0

.

Optimal investment is characterized by

(I∗)γ1−1 = q−b1

η1γ1Kγ2 > 0, when q > b1 = cI(0,K)
+,

I = 0, when b1 ≥ q ≥ b2 = cI(0,K)−,
(−I∗)γ1−1 = − q−b2

η2γ1Kγ2 > 0, when b2 > q

When the marginal value of capital, q, is between the sale price of capital (b2) and the purchase
price of capital (b1), it is optimal not to purchse nor to sell capital. It is optimal to buy
capital only if q reaches the boundary b1 and to sell capital only if q reaches the boundary b2.
We assume that the demand shock is governed by the geometric Brownian motion (4). The
Hamilton-Jacobi-Bellman equation for the marginal value of capital, q, is given by Eq.(11):

πK(K,X)− cK(I∗,K)− δq + qK(I∗ − δK) + µ(X)qX + 1
2
σ(X)2qXX = ρq.

When I∗ = 0, the equation above is simplified into

βhXνKβ−1 − δq − δqKK + µXqX +
1

2
σ2X2qXX = ρq. (31)

The general solution of eq.(31) can be expressed in the form

q(K,X) = AXνKβ−1 +B(X),

where the first term is the special solution and the second term is the homogeneous solution.
We suppose that the homogeneous solution is in the form B(X) = BXθ. We suppose that the
homogeneous solution is in the form B(X) = BXθ. Then, θ must satisfy the following quadratic
equation:

1

2
σ2θ(θ − 1) + µθ − (δ + ρ) = 0. (32)

There exist two distinct roots of this equation, θ1 > 1, θ2 < 0. The value of B(X) must remain
finite when the value of X approaches zero, which means that the term of Xθ2 should vanishes.
Therefore,

B(X) = BXθ1 .
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The coefficient B is a constant that is yet to be determined. Substituting the special solution
into eq.(31), we have

A =
βh

ρ+ βδ − νµ− 1
2ν(ν − 1)σ2

.

The firm will undertake non-zero gross investment only if q reaches one of boundaries b1 or
b2. The values of X at these boundaries, X1, X2, are given by the smooth-pasting and the
high-contact conditions. The same analysis as undertaken in the previous section can be used
here. Therefore, the basically same result concerning with the relationship between uncertainty
and the trigger threshold to invest will apply. An increase in uncertainty depresses investment
and so there exists a negative relationship between uncertainty and investment as far as ν < 1,
i.e., the profit function is concave function in X. On the other hands, when ν > 1, the negative
relationship between uncertainty and investment does not necessarily hold.

4 Concluding Remarks

We have shown that an increase in uncertainty decelerates as well as accelerates investment
depending on the value of the model paratemets. In particular, as far as the operating profit
function is concave in the demand shock, an increase in uncertainty depresses investment, but
even if the operating profit function is convex in the demand shock, an increase in uncertainty
may not necessarily raise investment and would depress investment, depending on the range of
model parameters. This result implies that the convexity of the operating profit function need
not necesarily to be dismissed in order to be consistent with the emprirical validity.
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